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Prisoner’s dilemma on a stochastic nongrowth network evolution model
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We investigate the evolution of cooperation on a nongrowth dynamic network model with a death-birth
dynamics based on tournament selection. In the limit of large population size, the equilibrium cooperator
density is well described by our mean field approximations and inversely related to the average degree in the
system. Small populations are also examined and found to deviate considerably from their expected mean field
behavior. An expanded replicator equation incorporating Gaussian fluctuations in the strategy densities is then
constructed, with its output agreeing well with our simulation data for all sizes. We also briefly comment on the
role of strategy mutation in sustaining polymorphic populations in small systems.
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I. INTRODUCTION

In biology an organism is called an altruist if its behavior
enhances the reproductive probability (fitness) of another in-
dividual at the expense of its own. An altruist then pays a
cost ¢ for its opponent to receive a benefit b, while a nonal-
truist pays nothing and just receives the benefit. Should such
behaviors be genetically encoded and if natural selection is
solely interpreted as preserving the traits that contribute to
individual fitness, then altruistic behaviors should be at a
selective disadvantage with respect to purely selfish ones.
Darwin himself was aware of this paradox, which he saw in
the proliferation of sterile insect castes.

A mathematical integration of altruism into evolutionary
theory did not appear until the 1960s when Hamilton pro-
posed that under certain conditions altruism can be favored
by natural selection if the recipient and donor of the altruistic
act are genetically related [1], a mechanism termed Kin se-
lection. Genetically related individuals have more common
alleles than two individuals picked at random, and while the
donor of the altruistic act lowers its reproductive chances by
doing so it raises the fitness of its relative, who has a good
chance of also carrying the allele coding for altruism. Thus
Hamilton posited that selection can also act to increase an
organism’s inclusive fitness, comprised of the reproductive
potential of an individual plus its genetic relatives, and the
family can be seen as the seed from which altruistic behavior
grows. Mathematically, Hamilton’s rule takes the form l;’
> %, where ¢ is the cost of altruism to the actor, b is the
benefit to the recipient, and r is a coefficient measuring the
relatedness of the two. An important conceptual shift in-
cluded in this viewpoint is that selection acts to preserve not
individual organisms but genes in a pool spanning whole
populations. Trivers [2] proposed that altruism can evolve if
it is reciprocated even if the individuals involved are not
related. Group selection [3] holds that altruistic behavior can
evolve if selection can act at the level of the group, i.e., a
population with more altruists will reproduce faster than a
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population with fewer altruists. The idea remains controver-
sial to this day, mainly due to the fact that altruistic groups
are susceptible to the invasion of cheaters.

Game theory, particularly in its evolutionary form first
introduced in [4] and [5], has proved to be a very useful tool
in studying the evolution of behavior because it fundamen-
tally describes frequency-dependent selection. The worth of
a particular behavior with regard to selection depends on its
frequency in the population and thus the behavior of others;
an altruistic behavior can be deemed adaptive only if there is
a sufficient frequency of altruists. The prisoner’s dilemma
game [6] has been extensively used to model the evolution of
cooperation and altruism between nonrelated individuals.
The game describes an interaction between two players each
having two strategies available to them, to cooperate C or to
defect D. A C-C outcome yields the payoff R for both play-
ers while a D-D event will give both players a payoff P.
Should one player cooperate and the other defect the coop-
erator will collect S and the defector 7. The payoffs are ar-
ranged such that 7>R>P>§ and 2R>T+S. In this setting
it is always better to defect, irrespective of the other player’s
choice. The dilemma lies in that if both players defect they
both receive P instead of R should they have both cooper-
ated. In the evolutionary game theory setting, strategies be-
come phenotypes and payoffs become fitness. Games take
place between members of the population in a pairwise fash-
ion, and the fittest phenotypes spread over the population. As
is customary in the literature, we can make an identification
between the language of Hamilton’s principle and the pris-
oner’s dilemma payoffs by letting T=b, R=b—c, P=0, and
S=—c.

In the 1980s Axelrod organized tournaments [7] where
contestants were requested to submit strategies to play re-
peated prisoner’s dilemma games against each other for a
finite but unknown number of times. The strategies were
recipes that specified the player’s next move based on stored
knowledge of the opponent’s past moves. Strategies would
then reproduce themselves in proportion to their accumulated
payoff after being played with a representative sample of the
population. In this setting, it was demonstrated that coopera-
tion is an evolutionarily stable outcome through a process of
reciprocity, as evident by the proliferation of the well-known
tit-for-tat strategy. In this strategy, the player will cooperate
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until defected against and will then keep defecting until the
opponent cooperates, at which point it will switch back to
cooperation. Reciprocity requires some sort of opponent rec-
ognition mechanism (and thus advanced cognitive faculties),
which was deemed sufficient but not necessary for the evo-
lution of cooperation.

The need for cognitive capacity was done away with in
[8] where pure C or D strategies occupied the points of a
two-dimensional grid. The strategies would play their grid
neighbors, tally their total score, and then for the next round
copy the strategy of their highest-scoring neighbor (imitation
dynamics). Cooperative elements could now survive on the
grid by forming clusters that resist invasion by defectors at
their borders. The need for memory was thus replaced with
spatial structure, much more prevalent in the natural world
than advanced cognitive capacity. Variations in the lattice
connectivity, topology, and strategy update mechanism have
since been extensively studied [9-22].

Doing away with the need for nodes to compare payofts
introduced by imitation dynamics (and thus any semblance
of cognitive ability in the players or agents), researchers have
recently studied finite systems evolving under stochastic
birth-death processes. Besides imitation dynamics, the au-
thors in [23] studied the prisoner’s dilemma on static regular
graphs of degree k using the frequency-dependent Moran
process [24]. In the birth-death Moran process, an individual
is chosen for reproduction proportionally to its fitness, and
then replaces a randomly chosen neighbor (accordingly, in
the death-birth process a node is randomly eliminated and its
neighbors fight to colonize the space proportionally to their
fitness). The authors report that cooperation is viable only in
the death-birth Moran process and only if the benefits, costs,
and average degree k are related as k<< f Similar results are
also reported in [25] for nonregular network topologies.

In this work we also employ a two-step death-birth pro-
cess with the following differences. When an individual is
removed, all its associated edges are also deleted from the
system. When an individual is born, as a copy of a stochas-
tically chosen fit individual, links are created between the
newborn and other individuals through a process controlled
by three parameters. Thus the individuals dynamically create
the network, which is not a preexisting space to be colonized
but an ever-changing relational web. Also, after the death of
a node, any fit node and not only its neighbors can parent an
offspring, which implies that clustering is not necessarily the
mechanism for the evolution of cooperation in our work.

II. NETWORK DYNAMICS AND SELECTION

Before we introduce our algorithm, consider a population
composed of n individuals, i of which adopt the strategy C
and n—i adopt the strategy D; further let us denote the frac-
tion of cooperators as x=r and that of defectors 1—x="-.
For a well-mixed population where each individual interacts
with every other individual (or a representative sample of the

population), we can then write

We=xR+(1-x)S, (1)

Wp=xT+(1-x)P, )
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W=xWe+ (1 -x)Wp (3)

for the payoffs of a cooperator and defector and the mean
fitness, respectively.

In the limit n — o the evolutionary game dynamics of this
system are well described by the deterministic replicator
equation [26], which describes the action of selection on the
frequencies of the two types. The replicator equation as-
sumes that strategies always reproduce at a rate proportional
to their fitness.

In its discrete time form this equation reads

xWe
w

(4)

Xl =

with a similar expression existing for the defector popula-
tion. Since 7> R> P> S we have that W, > W, and a popu-
lation evolving under natural selection with no mutation will
eventually reach the monomorphic and absorbing state i=0.
This is an evolutionary stable state (ESS) in the sense that
any mutant cooperators that might arise will have lower fit-
ness than the resident defectors and thus will be unable to
spread. The question arises then whether the existence of a
polymorphic ESS is possible in the prisoner’s dilemma and
what are the mechanisms that can bring it forth.

Here we maintain and evolve a population of pure strate-
gists linked by a network whose degree distribution evolves
under an algorithm first introduced in [27]. In its original
formulation, a time step of the algorithm consists of the fol-
lowing stochastic death-birth process.

(a) Removal. Choose a node at random, with probability
ﬁ, and remove it together with all its associated edges.

(b) Duplication. Choose a node at random, with probabil-
ity n+l; this is the parent node. Introduce a new offspring
node and attach edges between the node and the remaining
n—1 nodes in the following way. (1) Attach the offspring to
the parent with wiring probability p,. (2) Attach the offspring
to other nonparent nodes with wiring probability p, if an
edge does not exist between the parent and the other node.
(3) Attach the offspring to other nonparent nodes with wiring
probability p, if an edge exists between the parent and the
other node.

To the above algorithm we add selection, based on the
payoffs a node collects by playing against its neighborhood,
and also let offspring inherit the strategy from their parent. In
our simulations we let the population evolve under tourna-
ment selection [28]. In tournament selection, a subset of the
population of size ¢ is selected at random and all those se-
lected play against the nodes in their respective neighbor-
hoods. Their cumulative payoffs are compared and the node
with the highest score parents a new offspring. The tourna-
ment size ¢ can be thought of as representing the intensity of
selection; when r=n the fittest node always reproduces and
selection is strong. For r=1 we have random drift. In our
simulations we use r=2; if the tournament nodes happen to
have the same total payoff we randomly select one to repro-
duce. It is also worth noting that, although the tournament
winner always reproduces, it is possible that the average fit-
ness of the system will go down after the death-birth process
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since removal is random. As noted in [29] this can be a
desirable property since in natural populations a fit indi-
vidual may be replaced by a less fit one.

To initiate our system we cast a random network over the
population such that k=p,n is the mean degree. We also
randomly and with equal probability assign a C or D strategy
to each individual. Concerning the payoffs we let T>R
> P=S=0 so that only cooperative links have a positive ef-
fect on fitness, a choice that does not alter the essential char-
acteristics of the prisoner’s dilemma [8]. In the simulations
presented here, since we are primarily concerned with the
network effects on strategy frequencies, we use only one set
of payoff values and do not explore the payoff dependence.

If we set p,=p,=0, p,=1 nodes will interact only with
their same strategy parent and the population will settle in an
i=n state since R>P. On the other hand, letting p,=p,=0
and 0<py=1, the only stable equilibrium is the i=0 state.
Under our network dynamics it is possible for a node to
become isolated even if all the wiring probabilities are
greater than zero. This occurs if a node has all of its neigh-
bors progressively removed through its lifetime by death
events. An isolated node has no payoff and selection is blind
to its strategy since the phenotype expresses itself only
through the inclusion of a node to a neighborhood. Such a
node can still reproduce by chance (for example, by being
compared in the tournament against another node only con-
nected to defectors) and reattach itself to the network
through its offspring.

In this set of experiments we examine the parameter set
0<p,<1, p.=0, p,=1, which describes a world where el-
ements link up with their parent and a randomly chosen sub-
set of the population, which we vary in size. In this limit a
node will on average end up with p,n randomly formed con-
nections plus a link to its parent, for a total average degree of
k=p,n+1. The population structure introduced by the wiring
probabilities can then be expressed in the mean fitness cal-
culations as (excluding self-interaction)

i~ 1
We=(k—1)——R+R 5)
n—1

for a cooperator, and

Wp=(k=1)——T (6)
n—1
for a defector. Under natural selection, for a polymorphic
population to exist the expected fitnesses of the two types
must be equal. Setting W-=W, we can calculate the equi-
librium cooperator density to be

_n—k R

TG ™

In the limit n— we have (n—k)—n and thus

(k—=1)". (8)

=T (TR

From Eq. (8) we find that for (k—1)< % x— 1, while for
o> (k—=1)> % we have coexistence of the two types. We

PHYSICAL REVIEW E 78, 011904 (2008)

0 20 40 60 80
k—1

FIG. 1. Equilibrium cooperator density as a function of k—1

=[5,7,8,10,14,20,30,40,60,80] in linear scale for systems with
n=2000. Simulation results (circles) and Eq. (7) prediction (stars).

see then that increasing the size of the randomly created
average degree “dilutes” the advantage of the cooperative
offspring-parent bond with the onset of coexistence defined
by the game payoffs. Since T=b, R=b—c, P=0, and S=—c,
we can conclude that cooperation will prevail if k=5b/c. This
result is in line with Hamilton’s rule that frequent kin inter-
actions promote cooperation, and its network extension
[30,23], which states that networks of high connectedness
hamper cooperation as the average degree is an inverse mea-
sure of genetic relatedness.
Multiplying both sides of Eq. (7) by k—1, we get

x(k—=1)= ; —— =k =const 9)

(10)

Equations (9) and (10) represent the expected number of co-
operating links an element will form at fitness equilibrium
due to random sampling of the population. Since defectors
can acquire cooperator links only through random sampling,
we also have that

R

T-R’ (1

kDC= kc =

which is the expected number of cooperators adjacent to a
defector. Cooperators also link to their parent so

+l=— (12)

kee=kpe+ 1=
cc=Kpc T_R

T-R

for the expected number of cooperators adjacent to a coop-
erator. At equilibrium it should hold that Rkq-=Tkp so that

T
kcc=%kpc-

III. NUMERICAL RESULTS
A. Coexistence properties and system size dependence

In Fig. 1 we present results for x as a function of p,n=k
—1 from agent-based simulations of systems with n=2000
and T=1.2, R=1, P=S=0. To compute x we take the en-
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FIG. 2. Difference between simulation results and the predic-
tions of Eq. (7) as a function of k—1. n=2000 (dashed line) and
1000 (solid line). The units on the y axis are the percentages of
cooperators in the population. The error bars represent the standard
deviation.

semble average of 60 independent realizations with different
initial conditions and then the time average again over the
last ten generations. As mentioned in [31], a finite population
undergoing stochastic replication with no mutation will
eventually enter one of its absorbing states, which in our case
is x=1 or 0. The time to absorption, however, may be ex-
tremely long and all we can do is measure the observables of
this preabsorption transient. In what follows we will refer to
the preabsorption transient states as equilibrium and focus on
issues regarding the time to absorption in future work. From
Fig. 1 we can see that the simulation x is roughly in good
agreement with the values calculated from the mean field
approximation Eq. (7). For k—1 <5, there is no coexistence
and the absorbing state is one with x=1; for k—1>5 we
have coexistence that approximates a power law as xo(k
—1)# with B~-1. In Fig. 2 we show the difference between
simulation data and the predictions of Eq. (7) for systems of
size n=2000 and 1000. By comparing the two lines in Fig. 2,
we can see how increasing system size brings the simulation
results closer and closer to the mean field predictions.

This invites us then to look at the behavior of systems of
even smaller size. In Fig. 3 we show simulation data for
systems of size n=400. As we can see, these systems ap-
proach the behavior of an infinite system for intermediate
values of the average degree. For large (i.e., k—1=40) or
small (i.e., k—1=7) average degree, where one of the two
types initially has a large fitness advantage over the other, the
systems evolve to the absorbing states x=0 or 1. For even

1 o
0.81
0.8f
8
0.47
0.2r
0 O O
0 20 40 60 80

FIG. 3. Equilibrium cooperator density as a function of k—1
=[7,8,10,14,20,30,40,60,80] in linear scale for systems with n
=400. Simulation results (circles) and Eq. (7) prediction (stars).
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FIG. 4. Equilibrium cooperator density as a function of k-1
=[7,8,10,14,20,30,40,60,80] in linear scale for systems with n
=100. Simulation results (circles) and Eq. (7) prediction (stars). For
k—1=7,8,10 the x values do not denote the average proportion of
cooperators over the realizations but rather the frequency with
which the state x=1 appears.

smaller n=100 systems, Fig. 4, the effect is more pro-
nounced and coexistence is impossible.

Equation (7) predicts that as we increase n we should
approach x,, from below irrespective of k. Our data suggest
that as we increase n whether we approach x,. from below or
above depends on the average degree. Moreover for systems
with n=100 we observe only the absorbing boundaries of all
C or all D.

To summarize, our mean field analysis shows that systems
evolve to a stable fixed point consisting of coexisting C and
D populations; this is also supported by our simulation data.
For small systems our data suggest that the mean field breaks
down and the population performs a random walk to the
absorbing states. In finite populations the stochastic nature of
the death-birth processes leads to chance fluctuations in the
population densities. As a consequence the population fluc-
tuates about a population composition that equilibrates fit-
ness. For large enough populations, these fluctuations tend to
be suppressed and the population composition approaches
that of an infinite system. On the other hand for small popu-
lations the fluctuations can severely affect the ESS stability
[32-34,31] and chance instead of selection can determine the
evolutionary outcome (genetic drift in natural populations
[35]). To account for the influence of genetic drift the con-
cept of fixation probability [36] was recently introduced. In a
population where i individuals adopt the strategy A and n
—i the strategy B, the fixation probability ®; denotes the
probability that in some future time the population will be
made up entirely of A strategists. In this context, for a strat-
egy B to be evolutionary stable against a mutant A, it must
hold that W, < Wy and also that (Di=1<%, so that selection
opposes the fixation of the mutant through random drift. Of
interest is also the time required for the mutant to reach
fixation, the fixation time. Although any stochastic process
with no mutation will eventually hit an absorbing boundary
for any finite n, in games with mixed equilibria, and depend-
ing on the payoffs used, the time to absorption is an expo-
nential function of the population size [37,38]. As a conse-
quence, the polymorphic equilibria observed for large n drift
to absorption at such a slow rate that numerical simulations
are not very useful in reproducing them. We will return to
this point in our next section.
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FIG. 5. Iteration of replicator equation with Gaussian fluctua-
tions (left) and simulation data (right) for systems of different sizes
and average degrees. The x axis represents the system size n
=[100,400,1000,2000] and the y axis the degree k-1
=[7,8,10,14,20,30]. Both sets of data are averages over 60 ex-
periments. The cooperator density is mapped to a linear color index
ranging from black (x=0) to white (x=1).

As a first attempt to account for the small-population be-
havior, we hypothesize that in smaller systems density fluc-
tuations bring forth the absorbing states x=1 or 0. To this
extent we perform a numerical iteration of the discrete rep-
licator, Eq. (4), with the fitnesses of the two types calculated
by Egs. (5) and (6). In each step, after the next generation
densities have been calculated, we generate a Gaussian fluc-
tuation with a mean of zero and a standard deviation of o(n),
which we then add to the cooperator density and remove
from the defector density (we call this a stochastic replica-
tor). To calculate o(n) from our simulation data, we time-
average the standard deviation of x over every generation
and then ensemble-average over our number of realizations.
These data suggest that O'%ﬁ. In Fig. 5 we show a com-
parison of simulation data and the numerical iteration of our
stochastic replicator equation. Comparing the left and right
images in the figure, we can see how the stochastic genera-
tional replicator and our tournament selection death-birth dy-
namics are in good agreement. The monomorphic absorbing
states are reproduced by the stochastic replicator for small n
and the polymorphic states for large n. Coexistence starts as
the systems get larger and the average degree is at interme-
diate values. The fit between the output of the stochastic
replicator and our simulation data is not perfect; for example,
for n=100 and k—1=14 the simulation data give x=0 while
iteration of the replicator gives x=0.308. Sources of discrep-
ancy between the stochastic replicator and our death-birth
dynamics could be the generational versus sequential process
and also the selection method, tournament versus fitness pro-
portional (see [39]). This is to be determined in future work
where we will construct a difference stochastic replicator ex-
plicitly incorporating the microscopic tournament selection
and death processes.

This will also require an iterative model for the evolution
of the degree distributions since there is a tight coupling
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FIG. 6. Po(K) (stars) and Pp(K) (circles) for systems with n
=2000, average degree k=15, and steady state x=0.3718. The data
points are ensemble averages over 60 independent experiments.

between fitness and network structure. This brings us neatly
to our next section.

B. Degree distributions

The degree distributions in our model are also fitness dis-
tributions. Hence an analysis of their equilibrium and dy-
namical properties captures all the fundamentals of the
evolving dynamical system. Here we will briefly examine the
distributions at the point where the strategies are in fitness
equilibrium. Future work will concentrate on developing it-
erative coupled degree distribution and strategy models. Let
us here introduce the following notation.

P(K): The probability to find a cooperator with K neigh-
bors.

Pp(K): The probability to find a cooperator with K neigh-
bors.

Po(K¢): The probability to find a cooperator with K co-
operator neighbors.

Pp(Ke): The probability to find a defector with K coop-
erator neighbors.

P(Kp): The probability to find a cooperator with K, de-
fector neighbors.

Pp(Kp): The probability to find a defector with K}, defec-
tor neighbors.

In Fig. 6 we show plots from our individual-based simu-
lations for P~(K) and Pp(K). As we can see there is nothing
to distinguish the two types in terms of their neighborhood
size. In Fig. 7 we show plots of P~(K.) and Pp(K.). We now

FIG. 7. Po(K() (stars) and Pp(K) (points) for three different
systems with steady states characterized by x=0.7355, 0.5206, and
0.3718. The data points are ensemble averages over 60 independent
experiments.
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see that P-(K.) and Pp(K) differ from each other. Further-
more, their shape and position relative to each other remain
invariant as x varies. This invariance is a direct consequence
of fitness equilibrium and the degree-fitness distribution du-
ality. We can check that the distributions satisfy a dynami-
cally coexisting population scenario by using the distribution
data to calculate the following probabilities.

T*(i): The probability that the number of cooperators will
increase from i to i+1.

T~(i): The probability that the number of cooperators will
decrease from i to i—1.

7°(i): The probability that the population composition will
remain the same.

These probabilities represent the totality of possible
events such that

Q)+ T°()+ T°G) = 1. (13)

In our death-birth dynamics four events can occur. A coop-
erator can die with probability d- or be born with b.; a
defector can die with dj, or be born with bj,. This permits us
to write the transition probabilities as

T*(i) =dpbc,

T°() =dcbe+dcby.

The death probabilities for the two types are 51mp1y propor-
tional to their densities so that dc=7 and dp=""

When we select two elements to test for reproduction, the
one with the highest total payoff reproduces with probability
1. We will distinguish between the cases where the two ele-
ments are of the same type and when they are not. When the
elements are of the same type, since there is no mutation, an
element of that type is added to the population. A cooperator
will be born through this event with probability % and a
defector with probability g"—,i(xn%l

It is worthy of note that when we compare two individuals
of the same type we could have just as well allowed for the
less fit to reproduce. This is because, when an individual is
born, all of its edges, except the one to the parent, are created
at random and what is inherited is only the strategy. The
situation becomes different if the elements can inherit a por-
tion of their links from their parent (i.e., p,>0). Then what
is inherited is the type plus the “environment” and it would
matter whether we allowed the fitter or the less fit individual
to reproduce.

When we select two individuals of different types we fur-
ther distinguish between the cases where the individuals
have the same fitness and when they do not. When they have
the same fitness then we select one at random to reproduce

regardless of type. As mentioned previously, two elements of

different types can have the same fitness only when 7— ];;

we can then write the probability of an individual being born
by chance after being selected for the tournament together
with another individual of opposite type but equal fitness as
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, ] P(T )iP(R )n—i ”
aT = T\ R )P\ R ) (14)
with m=0,1,2,... ,int{@}.

When we select a cooperator and a defector with different
fitness values the individual with the highest fitness will re-
produce. This depends on where on their respective degree
distributions they sit in relation to each other. A cooperator
with | =K = %m can win over a defector if the defector
has a Kpc up to and including K--—m, where m is an inte-
ger. We can then write the probability that a cooperator was
born because it won the tournament against a defector as

=22 2 Pe(Keo) "S PoKpo _1. (15)
m Kee "kpe

The limits are
. n(T-R)
m=0,1,2, ....int{ "=},

(m=1)=Kee=7zm—1,

0=Kpc=Kcc—m.

For a defector via a similar payoff argument we get

=22 2 PD(KDC) =Sy PC(KCC)—1 (16)
m Kpc Kee
with limits
m=0,1,2, ... ine{ "2},

#(m—l)SKDCS#m—I,

In Table I we have tabulated the birth and transition prob-
abilities using the ensemble-averaged P-(K) and Pp(K()
from simulation data for systems with n=2000. As is evi-
dent, the transition probabilities between the two types are
very close; also note how the birth probabilities of the two
types are very close to their respective densities such that

X

= =EC).We thus conclude that for large n our systems are
indeed in fitness equilibrium and well described by the mean
field as in Eq. (7). The attractive nature of the equilibrium x
for large n can also be illustrated from Fig. 8 where we have
calculated the ratio 7*(i)/T(i) for i=1,...,n—1. Since T= (i)
are functions of the degree distributions, for every i we bi-
nomially generate P,(K.) with mean kp-=p,i and then let
Pc(K¢)=Pp(Kc—1) (since p,=1 and cooperators on average
have one more C link).

As mentioned in our discussion of size-dependent effects,
any stochastic process will perform a random walk to an
absorbing boundary, in our case i=n or 0, at a rate that de-
pends on n. Two quantities that are integral to an understand-
ing of this time dependence are the fixation probability [36],
the probability that a single strategy can take over an entire
population of the opposite strategy, together with its corre-
sponding time, the fixation time. The fixation probability will
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TABLE I. Densities of strategists together with birth and transition probabilities as a function of increas-

ing average degree for systems with n=2000.

k-1 x/(1-x) bl by T*(i) (i) 7°(i)
7 27822 27872 0.1938 0.1934 0.6128
8 1.8121 1.8523 0.2232 0.2184 0.5584
10 1.0846 1.0810 0.2479 0.2488 0.5033
14 0.5913 0.5978 0.2340 0.2315 0.5345
20 0.3419 0.3409 0.1888 0.1893 0.6219
30 0.2024 0.2030 0.1401 0.1396 0.7203
40 0.1448 0.1472 0.1119 0.1101 0.7780
60 0.0894 0.0926 0.0777 0.0751 0.8471

in general depend on the ratio of the transition probabilities
and thus the degree distributions generated by our wiring
probabilities. We are currently working to obtain analytic
expressions for the fixation and time probabilities, which will
enable us to further gauge the equilibrium properties of our
systems as a function of n.

Finally, let us mention that, armed with expressions for
the transition probabilities and a mean field set of equations
that describe how the degree distributions change after a
death or birth event, we will be able to iterate an equation for
the evolution of x of the form

. 1 . 1

X1 = T00)x, + T"(l)(x,+;) +T"(l)(x,—;). (17)
A similar prisoner’s dilemma model to ours, consisting of
death-birth dynamics and an evolving degree distribution, is
also examined in [40] and [41]. In these works the evolution
of the network is dictated by parameters that specify the rates
at which C-C, C-D, and D-D are formed. If the time scale at
which links are created and destroyed (z,) is faster than the
time scale of strategy update on each node (z,), then the
average fitness of individuals is determined by the steady
state fractions of C-C and C-D links in the system (active
links), denoted ® - and ®p=P . On the other hand, if
strategy update is fast compared to the network topology
update, when starting from a complete or random network,
the only evolutionarily stable outcome is universal defection.
If the time scales are comparable, an interplay between these

| " —
~ ¥
~
+
&~
0 500 1500 2000

1000
2

FIG. 8. T*(i)/T (i) as a function of i for different k-1
=7,14,40. Also shown (stars) are the fixed points i=xn from our
simulations.

two processes drives evolution. For ¢, <t it is then possible
to model the evolution of cooperation as taking place on a
complete graph but now with each payoff multiplied by the
respective fraction, such that the fitness equations become

We=®ccli- DR, (18)

WC = (I)CDiT (19)

for P=S=0. Essentially, this payoff transformation amounts
to absorbing the population structure induced by the wiring
probabilities into functions that give the fractions of active
links. In our work we have 7,=t7,; nonetheless, as we have
done up to now, we can assume that the steady state x is to a
good approximation a product of the steady state network
topology generated by the wiring probabilities. Conversely,
kcc and kpc are consequences of selection dynamics. In the
limit of large n, we can then attempt to compute the steady
state - and @ from the wiring probabilities as follows:

D= _p_.p +Po (20)
(i-1)
and
(DCD =DPo (21)
such that —cc o 2ePlitl) ke 1y, [41] the authors intro-
Dee ™ poli-1) kcc T R*

cc—
duce the parameter r=—4——

. which measures the advantage
of assortative (C-C) over disassortative (C-D) links and state
that whenever r>i the prisoner’s dilemma is transformed
into a coordination game. In Fig. 9 we show values of r
collected from our simulations for different average degrees
and hence steady state x. On the same plot we show the mean
field predictions calculated by Egs. (20), (21), and (7) and
the constant value i: T;TR. The mean field curve in the figure
shows us that only in the limit of high average degree and
low cooperation does r>§ hold true, whereas otherwise r
=5 and the advantage of assortative C-C links counterbal-
ances the cost to benefit ratio. Our simulation results (top
curve, Fig. 9) come with a sizable error margin although the
simulation r exceeds the predicted » by some margin. What
is plain to see is that when x is small the advantage of a C-C
link is much higher than when x is high. In a sense, the fewer
cooperators there are in the system the more valuable they
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FIG. 9. r as a function of the steady state cooperator density for
systems with n=1000. Simulation results (with standard deviations)

are the top curve, mean field predictions are the bottom curve. The
straight line parallel to the x axis indicates the constant c¢/b value.

become. In terms of the coordination game, at equilibrium
our payoff matrix gets transformed to R—®,-R and T
—®pT with O R=D T so that fitness equilibrium is at-
tained. This payoff matrix to our knowledge does not corre-
spond to a coordination game. A general model for the co-
evolution of strategy and network topology in a fixed-
connectivity system with death-birth dynamics is also
presented in [42] and applied to a variety of evolutionary
games. The authors point out that, since the criterion for
cooperation to thrive on a graph is b/c>k, in systems with
high average degree k the benefit obtained by cooperation
will have to be much larger than the corresponding cost,
which is deemed unrealistic. The authors then demonstrate
how giving agents the capacity to probabilistically rewire
their links in search of cooperating neighbors at a rate com-
parable to or higher than the death-birth dynamics can lead
to universal cooperation in a prisoner’s dilemma setting with
§=2 and k up to 40. In our parameter range presented here,
the relation b/c>k is indeed necessary for an all-C state;
however, there is essentially no coevolution between the gen-
eral network properties k, P(K) and the strategy abundances,
since there is no mechanism for the feedback of successful
links to future generations or link adaptation algorithm [al-
though P~(K.-) and Pp(K.) are a consequence and a cause
of coexistence]. Our preliminary simulation results (to be
presented in the future) for p,,p, as in the present paper, 1
<p,=0, and }f_=2 indicate that an all-cooperative state can
be reached for k> 40 through the coevolution of strategy and
structure. This would indicate that a link inheritance mecha-
nism could also explain the existence of cooperation in
high-k systems.

C. The effect of strategy mutations

If we introduce mutations, such that the offspring can
have the opposite strategy from the parent with probability
Pms coexistence can persist indefinitely. The equilibrium-
size-dependent x then becomes

_(n=kR-p,(n=1)(T+R)
- n(k—1)(T-R)

(22)

and as n—
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FIG. 10. Equilibrium cooperator density as a function of k—1
=[7,8,10,14,20,30,40,60,80] in linear scale for systems with n
=100. Simulation results (circles) and Eq. (22) prediction (stars).
There is a strategy mutation rate at birth of p,,=0.01.

R-p,(T+R)

(T-R) (23)

In Fig. 10 we show x for systems with n=100 together with
the mean field predictions of Eq. (22).

As we can see from Fig. 10 the introduction of p,, helps
suppress the fluctuations that in small systems can destroy
coexistence completely (compare Figs. 10 and 4). Producing
individuals of the opposite type has the obvious effect of
avoiding the absorbing states. Notice that a mutant offspring
can benefit from the link to the parent only when the parent
is a cooperator and the offspring a defector. This suggests a
mechanism for how the mutations might regulate the fluctua-
tions in density that bring about the absorbing states. When
there is a majority of cooperators (in low average degree k
environments), a mutant defector offspring will have a high
fitness compared to the average in the population, and thus
will be more likely to reproduce. As defectors start to spread,
and link to their parents, they again start to have lower av-
erage fitness than cooperators since in the low-k environment
defectors cannot amass the number of cooperator neighbors
they need to overcome the absence of payoff from the link to
their parent. On the other hand, when there is a defector
majority a mutant cooperator offspring will most likely have
the same fitness as its parent since S=P=0; thus cooperators
can spread due to the parent-offspring link. When their num-
bers start to rise, cooperators are at a disadvantage again as
the high average degree environment spells their doom.

IV. CONCLUSIONS AND FUTURE WORK

To summarize we have shown how coexisting populations
can persist in an ever-changing dynamic environment. Our
results are in line with Hamilton’s rule of kin selection op-
erating on a stochastically created network. Moreover, we
have briefly touched on the role of phenotypic mutation and
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its ability to regulate coexistence in smaller populations. We
plan to continue our research in the role of fluctuations, the
influence of selection methods, and the creation of a model
for the evolution of the degree distributions. Perhaps more

PHYSICAL REVIEW E 78, 011904 (2008)

importantly, we plan to examine systems with p,>0. In this
case the offspring inherits a strategy and a set of successful
relationships so that selection acts to preserve successful net-
work units and not just individual behaviors.

[1] W. Hamilton, J. Theor. Biol. 7, 1 (1964).
[2] R. Trivers, Q. Rev. Biol. 46, 35 (1971).
[3] E. Sober and D. Wilson, Behav. Brain Sci. 17, 585 (1994).
[4] J. M. Smith and G. Price, Nature (London) 246, 15 (1973).
[5] J. M. Smith, Evolution and the Theory of Games (Cambridge
University Press, Cambridge, U.K., 1982).
[6] R. Axelrod and W. Hamilton, Science 211, 1390 (1981).
[7] R. Axelrod, The Evolution of Cooperation (Basic Books, New
York, 1984).
[8] M. Nowak and R. May, Nature (London) 359, 826 (1992).
[9] K. Lindgren and M. Nordahl, Physica D 75, 292 (1994).
[10] G. Szabé and C. Toke, Phys. Rev. E 58, 69 (1998).
[11] K. Brauchli, T. Killingback, and M. Doebeli, Proc. R. Soc.
London, Ser. B 273, 405 (2006).
[12] M. van Baalen and D. Rand, J. Theor. Biol. 193, 631 (1998).
[13] M. H. Vainstein and J. J. Arenzon, Phys. Rev. E 64, 051905
(2001).
[14] G. Abramson and M. Kuperman, Phys. Rev. E 63, 030901(R)
(2001).
[15] H. Ebel and S. Bornholdt, Phys. Rev. E 66, 056118 (2002).
[16] B. J. Kim, A. Trusina, P. Holme, P. Minnhagen, J. S. Chung,
and M. Y. Choi, Phys. Rev. E 66, 021907 (2002).
[17] X. Chen, F. Fu, and L. Wang, Physica A 378, 512 (2006).
[18] P. Holme, A. Trusina, B. J. Kim, and P. Minnhagen, Phys. Rev.
E 68, 030901(R) (2003).
[19] J. Vukov and G. Szabd, Phys. Rev. E 71, 036133 (2005).
[20] V. Eguiluz, M. Zimmermann, C. Cela-Conde, and M. S. Migel,
AJS 110, 977 (2005).
[21] F. Santos, J. Pacheco, and T. Lenaerts, Proc. Natl. Acad. Sci.
U.S.A. 103, 3490 (2006).
[22] P. Taylor, T. Day, and G. Wild, Nature (London) 447, 469
(2007).
[23] H. Ohtsuki and M. Nowak, J. Theor. Biol. 243, 86 (2006).
[24] M. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg, Nature
(London) 428, 646 (2004).
[25] H. Ohtsuki, C. Hauert, E. Lieberman, and M. Nowak, Proc. R.
Soc. London, Ser. B 273, 2249 (2006).
[26] P. Taylor and L. Jonker, Math. Biosci. 40, 145 (1978).

[27] S. Laird and H. Jensen, Europhys. Lett. 76, 710 (2006).

[28] T. Blickle and L. Thiele, Evol. Comput. 4, 361 (1996).

[29] A. Traulsen, M. A. Nowak, and J. M. Pacheco, Phys. Rev. E
74, 011909 (2006).

[30] E. Lieberman, C. Hauert, and M. Nowak, Nature (London)
433, 312 (2005).

[31] S. Ficici and J. Pollack, J. Theor. Biol. 247, 426 (2007).

[32] A. Eriksson and K. Lindgren, in Proceedings of the European
Conference on Complex Systems ECCS '06, edited by J. Jost,F.
Reed-Thomas, and P. Schuster (IEEE Press, Oxford, 2006).

[33] A. Liekens, H. ten Eikelder, and P. Hilbers, in Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO 2004), Part 1, edited by K. Deb , R. Poli, W. Ban-
zhaf, H. -G. Beyer, E. K. Burke, P. J. Darwen, D. Dasgupta, D.
Floreano, J. A. Foster, M. Harman, O. Holland, P. L. Lanzi, L.
Spector, A. Tettamanzi, D. Thierens, and A. M. Tyrell
(Springer, New York, 2004), p. 549.

[34] A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev. Lett.
95, 238701 (2005).

[35] M. Kimura, The Neutral Theory of Molecular Evolution (Cam-
bridge University Press, Cambridge, U.K., 1986).

[36] M. Nowak, Evolutionary Dynamics, Exploring the Equations
of Life (Belknap/Harvard University Press, Cambridge, MA,
2006).

[37] A. Traulsen, J. M. Pacheco, and L. A. Imhof, Phys. Rev. E 74,
021905 (2006).

[38] T. Antal and 1. Scheuring, Bull. Math. Biol. 68, 1923 (2006).

[39] S. Ficici, O. Melnick, and J. Pollack, in Proceedings of the
2000 Congress on Evolutionary Computation GEC00, edited
by A. Zalzala, C. Fonseca, J. H. Kim, A. Smith, and X. Yao-
(IEEE Press, New York, 2000), p. 880.

[40] J. M. Pacheco, A. Traulsen, and M. A. Nowak, Phys. Rev. Lett.
97, 258103 (2006).

[41] J. Pacheco, A. Traulsen, and M. Nowak, J. Theor. Biol. 243,
437 (2006).

[42] F. Santos, J. Pacheco, A. Traulsen, and T. Lanaerts, PLOS
Comput. Biol. 2, e140 (2006).

011904-9



